Showing posts with label death. Show all posts
Showing posts with label death. Show all posts

Death By Haunted House


Halloween is a time when fear is invited. The rush of
adrenaline in a controlled environment is life-
affirming. Not much else to comment on here,
except that he seems to have excellent oral hygiene
for a chainsaw-wielding maniac.
The big man with the chainsaw and the gaping wound on his face jumps out from around the corner and growls. You leap backward, your heart pounding in your ears. You’re ready to either take that power tool and teach him a lesson or to run like the kid from Home Alone.

Haunted houses are great examples of stimuli that induce the fight or flight response. The name is suggests two mechanisms are fighting it out, but there is really only one biologic pathway. Whether an animal tries to escape or tries to defend itself, its muscles and mind need to be ready.

In response to a threat, the brain triggers the release of epinephrine and cortisol from your adrenal glands into the blood. As a result, your heart beats faster and stronger, your blood vessels dilate to move more blood, and your lung vessels dilate to exchange more oxygen for carbon dioxide. Equally as important, your liver breaks down glycogen (a sugar storage molecule) to glucose and dumps it into your bloodstream.

All these processes work together to increase your alertness and increase the power of your muscles for a short time - like mothers who lift cars off their small children. You are now ready to respond to the threat; however, there is an exception – you may do nothing at all.

One of the major control mechanisms of the fight or flight response is the autonomic nervous system. This is part of the peripheral nervous system (PNS, outside the brain and spinal cord) and transmits information from the central nervous system to the rest of the body. The autonomic system controls involuntary movements and some of the functions of organs and organ systems.

Parts of the autonomic system acts like a teeter-totter, doing different jobs. It is their relative balance that controls the outcomes. In the fight or flight response, the sympathetic system predominates and your heart rate increases and your blood vessels dilate.

The autonomic nervous system is divided into sympathetic
and parasympathetic. Much of the sympathetic innervation
comes from the thoracic and lumbar regions, while most
parasympathetic innervation is carried by the vagus nerve.
You can see that the two systems have largely opposite effects.
Butwhat if the parasympathetic systemgained an upper hand for a short time? The parasympathetic system controls what is sometimes called the rest and digest response – the opposite, get it? The heart slows, the blood vessels constrict in the muscles, blood moves from muscles to the gut, and glycogen is produced from glucose. Remember the old adage - don’t swim after your dine; eating puts you in a parasympathetic state of mind! (O.K., I just made it up)

Many people have had the experience of parasympathetic domination coincident to a threat, for some folks it proceeds long enough to have an observable result – they faint. The vagus nerve (a primarily parasympathetic cranial nerve) controls much of this response, so it may be called the vasovagal response. The parasympathetic-mediated reduction in blood oxygen and glucose do not spare the brain - and when your brain is starved of oxygen and glucose, you pass out. Fighting or fleeing is difficult when you are unconscious.

Lower animals will faint as well, but they have additional defenses along these lines. Mammals, amphibians, insects and even fish can be scared enough to fake death – ever hears of playin’ opossum?

There are overlapping mechanisms for feigned death, from tonic immobility (not moving) to thanatosis (thanat = death, and osis= condition of, playing dead). When opossums employ thanatosis, they fall down, stick their tongue out, and even emit a foul smelling odor from glands around their anus. One study in crickets showed that those who feigned death the longest were more likely to avoid being attacked, so this is definitely a survival adaptation – except for the opossums scared by cars and decide to play dead in the street.

Feigned death deters predation, so being scared ain’t all bad. Many predators won’t eat something that is already dead, so not moving could protect them from attack. Another theory is the clot formation hypothesis; it contends that slowing the heart and blood flow forces blood clots to form faster. This will reduce the amount of blood lost during an attack, improving chances for survival.

New evidence is suggesting that even humans undergo tonic immobility. Post-traumatic stress patients asked to relive their trauma show definite signs of tonic immobility, although first they show signs of "attentive immobility," which is more voluntary then the tonic form.

I highly recommend this new book for popular
biology and medicine readers. Zoobiquity explores
a powerful reality. No disease--whether physical or
psychiatric--is uniquely  human. We have much to
learn from animal patients and from the doctors who
care for them.  The impact on human medicine
will be significant.
We havediscovered one exception to the rule; instead of fight or flight, it is really fight, flight or faint – but can we take it further? Should it be fight, flight, faint, or fatality? The answer is yes, but it is very rare. Sometimes animals (including us) don’t just feign death when afraid – they actually die.

In their new book, Zoobiquity, What animals can teach us about health and the science of healing, Barabara Natterson-Horowitz and Kathyrn Bowers talk about capture myopathy in animals. Small traps that limit movement, cause pain, or are associated with loud noises can cause spontaneous death in live-trapped animals. Several decades ago it was not unusual for 10% of trapped animals to die. In birds, the death rate often rose to 50%! More humane methods of live trapping have reduced the death rate, but point is made – these animals were scared to death.

A human analogy of capture myopathy may have been identified. People that have had a sudden emotional shock, perhaps the death of a loved one, some other tragic occurrence, or crippling fear can undergo something that looks a lot like a heart attack, even if they have no history of heart disease.

This sudden loss of heart rhythm has been called broken-heart syndrome, but is more accurately termed stress cardiomyopathy (SCM). In these cases, the heart actually changes shape! The part of the heart that pumps blood out to the body (left ventricle) balloons out and loses the ability to pump efficiently. Dramatically less efficient pumping leads to symptoms just like a heart attack.

In the normal left ventricle of the heart (left image), the muscle is
thick around the space (in red) and contracts strongly. In SCM, the
space is ballooned at the based (middle image) and the muscular wall
is thin, giving a weak contraction. The change in shape can be seen in
the superimposed images on the right, as is the octopus trap (tako-tsubo)
that the original Japanese describers thought the lesion looked like,
hence the early name takotsubo cardiomyopathy.
In most cases, SCM and the change in heart shape resolve after a time and there is little left to show they were present, but if they go too far for too long, they can cause death – called sudden cardiac death. There are many causes for sudden cardiac death, but emotion and fear are definitely among them.

I was wondering if there was a link between SCM in humans and capture myopathy in animals, so I asked Dr. Natterson-Horowitz. She told me that those studies have not been done yet; we don’t know if there is a heart shape change in captured animals. I think it would be hard to get approval for studies that would intentionally scare animals to death.

One interesting connection amongst fight or flight, capture myopathy, and SCM is the catecholamine dump involved. Epinephrine and norepinephrine control all three responses, and in humans, they control even more. Recent evidence shows that catecholamines mediate the production of fear memories.

You remember fearful events more readily and more vividly as a survival adaptation. Strong memories help you to avoid dangerous situations in the future. In this way, your mind can affect how your body responds to a threat. We will see this again in just a bit.

All babies have an exaggerated startle reflex until
they are several months old, but in some cases it may
contribute to SIDS. An exaggerated startle can lead to
apnea (temporary breathing cessation) and this can be
compounded by a depressed heart rate if the baby is
sleeping on its stomach. Some clinicians also theorize
that swaddling may contribute by exaggerating the startle
due to confinement stress, but by far the greatest
association with SIDS is stomach sleeping.
However, dying or nearly dying from fright isn’t all in your head either; some conditions can predispose you to dying from a sudden shock. One unfortunate condition is called hyperekplexia, or startle disease of the newborn. Newborns with one or more of several mutations in the glycine receptor (an inhibitory receptor in the brain used in neuron signal transmission) can lead to these babies dying from loud noises or a sudden touch.

The startle reflex involves squinting to protect the eyes, raising the arms, hunching the body to protect the back of the neck, as well as inducing the fight or flight response. With the loss of inhibitory signaling, the signals that ramp up a startle response are unchecked and can lead to uncontrolled beating of the heart (ventricular fibrillation, VF) and sudden cardiac death.

Just as some cases of the fight or flight response going too far, the startle can sometimes lead to VF. A recent study has shown that the bigger the perceived threat, the bigger the startle reflex will be. Also, if there is a fearful environment prior to the threat, then the startle will be bigger. Once in a long while, it goes too far.

Similar to hyperekplexia, there is another condition that could lead to VF and death in the environment of fear. Long QT syndrome can either be inherited or acquired later in life, and affects the time between beats of the heart. In long QT, the interval is variable and longer, and can lead to inefficient beating and VF.

On echocardiogram tracings a heartbeat has a certain shape, and 
each point has a corresponding name which is represented 
by a letter. If the time between the Q point and the T point 
is too long, the heart rhythm is subject to disintegrating 
into chaos. In the 1990’s, the antihistamine Seldane was 
taken off the market due to QT interaction when it was 
given with the antibiotic erythromycin.
Highlightingour circle of fear and the body, evidence presented here and here suggest that SCM can cause acquired long QT syndrome. Dr. Natterson-Horowitz said today many patients with long QT may have implantable defibrillators. In earlier days, however, these patients were warned not to use alarm clocks or to jump into cold water – they could startle themselves to death.

Last week we talked about premature burial. It would be easy to envision a person waking up inside a coffin, and then dying from the fright of being buried alive! Does this mean that you are putting yourself in peril every time you visit a haunted house at Halloween? Probably not, remember that deaths from fright are exceedingly rare. Maybe you could just feign death, and the horrible monster will leave you alone.

Next week, something less macabre. Let’s look at the biology of two Halloween staples - jack o’ lanterns and candy corn.


Greek, R. (2012). Zoobiquity: What Animals Can Teach Us About Health and the Science of Healing. By Barbara Natterson-Horowitz and Kathryn Bowers. Knopf Doubleday Publishing: New York, NY, USA, 2012; Hardback, 320 pp; $16.23; ISBN-10: 0307593487 Animals, 2 (4), 559-563 DOI: 10.3390/ani2040559

Volchan, E., Souza, G., Franklin, C., Norte, C., Rocha-Rego, V., Oliveira, J., David, I., Mendlowicz, M., Coutinho, E., Fiszman, A., Berger, W., Marques-Portella, C., & Figueira, I. (2011). Is there tonic immobility in humans? Biological evidence from victims of traumatic stress Biological Psychology, 88 (1), 13-19 DOI: 10.1016/j.biopsycho.2011.06.002


For more information or classroom activities, see:

Fight or flight –

Autonomic nervous system –

Thantosis/tonic immobility –

Stress cardiomyopathy –

Hyperekplexia –

Long QT syndrome -


Mostly Dead Is Slightly Alive

Miracle Max had his own methods for determining if
someone was all dead or just mostly dead. They involved
a bellows and Carol Kane’s voice.  But the point is made,
for centuries, people were just guessing if others were
really dead. There were few experts, and they were
probably just comedians in make-up.
Halloweenhas morphed into a holiday where people see how much it takes to scare them. Horror movies, haunted houses, dangerous pranks; people like to be scared.

What scares you the most– spiders, public speaking, death? These three are high on every list of common fears, but it wasn’t so long ago that another fear was in first place – taphophobia. Never heard of it? I bet that its mere definition will be enough to send a chill up your spine.

Technically, taphophobia means “fear of graves” (taphos = tomb, and phobia = fear of), but its common use is “fear of being buried alive.” Premature burial is not an urban legend, incidents have been documented in nearly every society – and not all of them were just in the movies or books.

In the 1800’s and earlier, being dead was a lot like being a duck….. you know, if it looks like a duck, walks like a duck, and quacks like a duck….. The appearance of death was often enough to make a diagnosis and start going through their pockets.

As a good example of the wisdom of the age, George Washington had these last words, "Have me decently buried, but do not let my body be put into a vault in less than three days after I am dead…….., tis well." He wanted a sufficient amount of time to pass to ensure that he was in fact dead.

The Irish wake probably originated in the leaving of the
tomb unsealed for several days, just in case the dead
person might wake. Later, stories came about concerning
the lead in pewter tankards from which the Irish would
drink. Lead poisoning could induce a state that resembled
death. Sometimes, a wake is just another reason to raise
a glass of ale.
Manycultures built time delays into their death rites to make sure someone was truly dead. Greeks washed the dead….. and some would wake up. In more difficult cases, they would cut off fingers or dunk the bodies in warm baths. The custom of the Irish wake began with the Celts watching the body for signs of life. But mistakes were made, often in times of epidemic.

The hopes of preventing the spread of infection often lead to burying the dead before they were quite dead. I give you plague victim Eric Idle in Monty Python’s Search for the Holy Grail – “But I’m not dead yet…. I’m feeling much better.”

Even without epidemic, most people in the 18th, 19th, and early 20th centuries died at home, having never seen a doctor. If someone couldn’t hear a heartbeat or feel a pulse, then the patient was dead. But these were lay people, did they know how to feel for a pulse? Maybe they relied on another indicator of death - rigor mortis (rigor = stiffness, and mort = death).

In humans, rigor mortis begins 2-6 hours after death. Rigor is caused by a loss of ATP production. Follow me here--- no breathing, no oxygen; no oxygen, no ATP production. With no ATP, the muscle  can’t relax. This may seem strange, since it takes ATP to contract a muscle in the first place.

As described in the text, the thick filament (myosin) pulls
itself along the thin filament (actin) by grabbing and releasing
actin monomers. A single sarcomere (contractive subunit,
~100,000 in a muscle cell) has millions of myosin heads. They
grab actin fibers that run on all sides of the myosin fiber.
Thepicture at the side should help with this explanation, but I won’t give you all the gory details. Your muscle cells have systems that look like ratchets, using to proteins called myosin and actin which pull past one another to shorten (contract) the muscle fiber. The myosin is bound by ATP, which then hydrolyses to form ADP + P. When ADP + P is bound to myosin, it can reach out and bind to the actin.


The ADP + P is released from the myosin and it flexes the head of the protein, which pulls it along the actin. When a new ATP is bound, the myosin lets go from the actin, and the cycle is repeated.  Each muscle fiber in each cell has millions of myosin heads resulting in a contracted muscle.

In rigor, there is no more ATP, so the myosin doesn’t let go of the actin, therefore, no relaxation can take place. The muscles remain the length they were at death. After about 72 hours, the muscle proteins start to break down, rigor will lessens and the body will become limp again. But as we will see below, some conditions can mimic the signs of rigor, increasing the chances of premature burial.

In an effort to see how bad the situation was, the English reformer, William Tebb, in 1905 made a study of accidental premature burial. Tebb was quite the joiner; the weirder the society, the more he wanted to join or lead it. He worked with the Vegetarian Society, the anti-vivisection movement, the national Canine Defense League, and formed National Anti-Vaccination League in 1896.

William Tebb’s book on premature burial was a best seller.
You’d think he had a product to sell given the way he
described some of the incidents. In one, Madame Blunden
was buried in a crypt under a boys school. The next day, the
students heard noises from below. They opened the tomb
and coffin just in time to see her die from lack of oxygen.
In his book, Premature burial, and how it may be prevented, with special reference to trance catalepsy, and other forms of suspended animation, Tebb professed that he had found 219 cases of near premature burial and 149 live burials. He had some stunning stories of scratches on the lids of coffins and noises from newly filled graves.

In her 1996 book, The Corpse: A History, Christine Quigley documents many instances of premature burial and near-premature burial (I LOVE the title). Skeletons were outside their coffins, sitting up in the corner of their vault after being opened years later. Others were found turned over in their caskets, with tufts of their own hair in their hands.

How might this happen? What conditions might make it look so much like you were dead that even your loved ones would let them plant you in the ground? The list is long and varied, but here are some of the more common things that can make you look dead:

Asphyxiation – anything that cuts off your supply of air can make you look dead once you fall unconscious – continuation of this condition leads to actual death. You look dead enough and won’t respond to external stimuli, so people assume you are dead. Close the coffin lid, and soon you really will be dead of asphyxia.

Catalepsy – Many things can bring on this catatonic state in which the muscles are rigid (like rigor mortis after death) and no pain is enough make you respond, one example is epilepsy. Hypnotists call their trances catalepsy (Greek for to grab and take down), but true catalepsy is much more severe and can last hours to days. Severe emotional trauma can also bring it on, so you can certainly be scared enough to look like you are dead.

Catalepsy is denoted by muscle rigidity, so it can look like
rigor mortis. But there is also waxy flexibility in some cases.
The dead-looking not dead people can be posed, and they
will hold the pose indefinitely. What little girl wouldn’t love
a cataleptic doll for Christmas!
Coma – In medicine, a coma is unconsciousness that lasts more than six hours and from which a person cannot be roused and will not respond to stimuli. Injury or inflammation of the cerebral cortex and/ or the reticular activating system in the brain stem can lead to coma. The things that can injure these structures are myriad, from traumatic injury, to drug overdose, to stroke or hyperthermia, etc.

To show how medicine has changed, there is now a battery of assessments called the Glasgow coma scale (GCS) that are carried out on coma victims to assess their state and prognosis. In centuries past, you might look at them, hold a mirror under their nose, maybe lift and drop an arm….. bury them.

The GCS has traditionally been used in the hospital environment, but new evidenceshows that a prehospital GCS (assessment at scene or in route) can be just as accurate and may benefit treatment choice in pediatric traumatic brain injury patients. The study compared prehospital and emergency department GCS scores and showed that they were similar. They also compared outcomes with prehospital scores and showed a positive correlation. If assessment and treatment can be begun earlier, outcomes should improve.

Apoplexy – this not a very accurate term any longer, and has meant different things at different times. It can refer to bleeding within an organ or bleeding during a stroke. A stroke is very likely to leave survivors that look like they are dead, and are unresponsive. Nevertheless, there are stroke victims who regain consciousness.

Due to the above conditions, many people in the 1700’s and 1800’s made a hunk of change by promoting safety coffins and vaults. These might be as simple as attaching a rope to the hand of the deceased, and running this rope to the surface where it was attached to a bell.

In other coffins the alterations were more elaborate. There might be glass plates to view the face of the dead or a periscope to keep an eye on the corpse. Some thirty designs were patented just in Germany in the second half of the 19th century, including some that contained vibration sensors, and later… a telephone line.

Waiting mortuaries were built in the 1800’s, mostly in
Germany. Since the best sign of death was the beginning
of the rotting process, these mortuaries were basically
holding cells for bodies while nature took its course. If they
didn’t start to smell, they had to look for fangs or a way to
arouse them.
To be successful, those folks above ground must have been very alert. A coffin has only about 20-40 minutes of air, so a person could go from dead to live to dead without the change being noted. To counteract this small window of time, Germany also built waiting mortuaries, where dead bodies could be held for longer periods of time. It came to be accepted that the only reliable sign death was putrefaction --- waiting mortuaries did not smell like flowers or fresh baked bread.

Modern EEG and EKG have reduced the chance of premature burial or cremation, but mistakes do get made. In 2007, a Venezuelan man awoke during his own autopsy, and Quigley also writes of several modern instances of near-premature burial. Furthermore, the need for quick burial during epidemics has been replaced by the need for timely organ harvests – maybe they aren’t done with that kidney yet!

Next week we will take Halloween and death one-step further – could Halloween, or anything else for that matter, literally scare you to death?

nature science for kids,nature science definition,nature science articles,nature science jobs,nature science museum,nature science projects,nature science magazine,nature science journal nature science for kids,nature science definition,nature science articles,nature science jobs,nature science museum,nature science projects,nature science magazine,nature science journal